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We study a mathematical model of a single neuron with self-coupling. The model is based on the FitzHugh-
Nagumo oscillator and an equation describing synaptic properties of the neuron. The analysis of the model is
focused on its dynamics, depending on parameters characterizing synaptic time constants and external signals
that affect the neuron. Applying Lyapunov exponents and bifurcation analysis, we point out the occurrence of
parameter regions with different behavior such as bursting �chaotic or periodic�, spiking, and multistable
phenomena. Moreover, we can describe the dynamics of the model using an analytical approximation of the
one-dimensional Poincaré map extracted from the numerical simulations.
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I. INTRODUCTION

The transmission of information in the brain is accom-
plished by trains of pulses or action potentials that are often
organized in sequences of bursts. Mathematically, the gen-
eration of action potentials was first described successfully
by Hodgkin and Huxley �1�. The Hodgkin-Huxley model
was developed in order to describe the behavior of the nerve
cells of the squid giant axon, taking into account different
ion channels of the nerve membrane.

The Hodgkin-Huxley system is regarded as a base model
for excitable nerve cells. Since the Hodgkin-Huxley system
generates only spike oscillations �repetitive firing of the cell�
it has to be extended in order to describe bursting of neurons
�bursts of oscillatory activity that are interspersed by quasis-
tationary states�.

The mathematical modeling of bursting needs a second,
slow time scale in addition to the fast time scale that is pro-
vided, for example, by the Hodgkin-Huxley model. The slow
time scale variable describes usually a nonmembrane quan-
tity, e.g., the total postsynaptic potential of a neuron �2� or
the intracellular free calcium concentration in the Chay-
Keizer model of pancreatic � cells �3�.

Bursting in the context of slow-fast systems has been ex-
amined, e.g., by Rinzel �4�. Rinzel describes the generation
of bursting due to the interaction of slow and fast times
scales in general and for special systems like the Chay-
Keizer model and the FitzHugh-Rinzel model for nerve cells.
The last model contains the FitzHugh-Nagumo system,
which is a simplification of the Hodgkin-Huxley equations
�5–7� that describes qualitatively the generation of action
potentials at the axon initial segment of the neuron. Such
types of neuronal oscillators have been considered, for ex-
ample, by Plant �8�. There, a mathematical model based on
the FitzHugh-Nagumo system was developed in order to in-
vestigate the behavior of a single neuron with recurrent ac-
tivity. Finally, bifurcation sequences that lead to bursting
were classified and analyzed in the papers of Izhikevich
�9,10�.

The mathematical neuron model investigated in the
present paper uses a variant of the FitzHugh-Nagumo system
to model the action potential generation at the axon initial

segment of a neuron. Similar to other nonlinear oscillators
used in neuron modeling, the FitzHugh-Nagumo system dis-
plays stationary solutions and periodic oscillations depend-
ing on the actual value of the bifurcation parameters. The
incoming signal of a neuron is described by an additional
equation, called network equation that sums up all signals
arriving from other connected neurons. The network equa-
tion can take into account possible time delays due to signal
propagation along the axon, dendrites, and the synapses as
well as the strength of the synaptic coupling and time con-
stants of the synapse. The combination of the fast FitzHugh-
Nagumo subsystem and the slow network equation results in
a nonlinear system of three coupled ordinary or delay differ-
ential equations for a single neuron. This system is able to
display the two main types of neuronal oscillations that are
bursting and spiking. For detailed analytical and numerical
investigations of the system, we refer to �2,11�.

We study the properties of a single self-coupled neuron
model. This case results from a synchronized neural network.
It can be shown that under some conditions on the param-
eters the dynamics of the whole synchronized neural network
can be reduced by a homogeneity approach to the dynamics
of a single self-coupled neuron �2,12�. Synchronized states in
neuronal networks are found, for example, as pathological
states in the case of epileptic seizures or Parkinson’s disease.

Of particular interest for a better understanding of the
model mechanism is the question of whether an explicit de-
lay in the signal propagation is an essential model ingredient
to generate the highly appreciated nonlinear solutions like
spiking and bursting. From the biological point of view this
delay seems to be natural. In special situations �see, e.g., �4��
there are nerve models displaying burst solutions only by the
interaction of slow and fast time scales. So here we go along
the way of Rinzel �4� and analyze the properties of a single
neuron model without retarded signal propagation. We inves-
tigate the resulting model dynamics using analytical and nu-
merical approaches. In addition, periodic solutions of the
neuron system were characterized with regard to its stability
and its transitions to chaotic states.

We show how complex oscillatory dynamics arises in our
model depending on the bifurcation parameters. Together
with the analysis of the stability of these different states we
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obtain a better understanding of the phenomena that can oc-
cur in neural networks.

The paper is organized as follows. In Sec. II the math-
ematical model is introduced and important properties of the
system are assorted. Section III gives an overview of the
numerically computed dynamical properties of the system
for different bifurcation parameters and its stability. In Sec.
IV a piecewise monotone one-dimensional Poincaré map is
derived from the system in order to obtain a deeper under-
standing of the dynamics of the system. A discussion of the
results in Sec. V concludes the paper.

II. THE MATHEMATICAL MODEL

As explained in the Introduction, we investigate the prop-
erties of the core system

�U̇�t� = − U�t� + qG„V�t�… + e ,

V̇�t� = c�W�t� + V�t� −
1

3
V3�t�� + �U�t� ,

Ẇ�t� = �a − V�t� − bW�t��/c . �1�

In this model the total postsynaptic potential U�t� is gen-
erated by the network equation �first equation in the system�
that contains the incoming signal and the synaptic properties.
Further components of the network equation are the neuronal
transfer function

G�V� =
1

1 + exp�− 4V�
,

which models the relation between the incoming presynaptic
potential V�t� and the postsynaptic potential U�t� that is ob-
tained as an answer of the synapse to the incoming signal.
The parameter q denotes the synaptic coupling strength.
Positive values of q correspond to excitatory synapses,
whereas negative q describe inhibitory synapses. The time
constant � characterizes the dynamical properties of the syn-
apse and e considers further external incoming signals. The
axon initial segment of the neuron where the outgoing signal
V�t� �also called membrane potential� is generated is mod-
eled by the FitzHugh-Nagumo oscillator ��V,W�-subsystem�.
The parameter � couples the total postsynaptic potential U�t�
to the axon initial segment. W�t� is an auxiliary variable and
a ,b ,c are parameters of the FitzHugh-Nagumo subsystem.

A. Limit cases

For ��0 our system �1� can be rewritten in the form

U̇�t� =
1

�
�− U�t� + qG„V�t�… + e� ,

V̇�t� = c�W�t� + V�t� −
1

3
V3�t�� + �U�t� ,

Ẇ�t� = �a − V�t� − bW�t��/c . �2�

In the case ��1 the variable U is commonly referred to as
the slow variable and V and W are called fast variables.
Rescaling the time s= t /� gives then a system of the form

U̇�t� = − U�t� + qG„V�t�… + e ,

1

�
V̇�t� = c�W�t� + V�t� −

1

3
V3�t�� + �U�t� ,

1

�
Ẇ�t� = �a − V�t� − bW�t��/c . �3�

The essential idea in singular perturbation theory is to
deduce the behavior of the solutions of the singularly per-
turbed system by studying the two limiting cases resulting
from Eqs. �2� and �3�.

The first limit case ��=� in �2�� defines the fast sub-
system

U̇�t� = 0,

V̇�t� = c�W�t� + V�t� −
1

3
V3�t�� + �U�t� ,

Ẇ�t� = �a − V�t� − bW�t��/c . �4�

Equation �4� is a modified FitzHugh-Nagumo system with U
being a parameter. In the following we refer to equation �5�
when we mention the FitzHugh-Nagumo system

V̇�t� = c�W�t� + V�t� −
1

3
V3�t�� + �U ,

Ẇ�t� = �a − V�t� − bW�t��/c . �5�

System �5� has been investigated intensively �4,11,16–18�.
We summarize some important previous results that are valid
for parameter ranges that correspond to interesting neural
dynamics in our model.

For a, c�0, 1
2 	b	1, and b2

2b−1 	c2, system �5� under-
goes a subcritical Hopf bifurcation with respect to the param-
eter U at the bifurcation points UHopf1 and UHopf2. Moreover,
there are two points USN1	UHopf1 and USN2�UHopf2 where
our system has saddle node bifurcations of periodic solu-
tions. For values U� �USN1 ,UHopf1� and U� �UHopf2 ,USN2�
system �5� displays multistability. This means that there co-
exist a stable equilibrium, a stable periodic orbit, and an
unstable periodic orbit. The interval �USN1 ,USN2� can be re-
garded as the oscillation interval of the FitzHugh-Nagumo
system �5�.

Numerical calculations of the bifurcation scenario of Eq.
�5� are shown in Fig. 1.

Working out the limit �→� in �3� defines the slow sub-
system

U̇�t� = − U�t� + qG„V�t�… + e ,
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0 = c�W�t� + V�t� −
1

3
V3�t�� + �U�t� ,

0 = �a − V�t� − bW�t��/c . �6�

From the second and third equation above we can deduce the
relation

U =
c

�
�1

3
V3 − V�1 −

1

b
� −

a

b
� .

Using this and the first equation of the slow subsystem �6�
we find the scalar differential equation

V̇�t� =
1

3

�− cbV3 − 3cV�1 − b� + 3b�„qG�V� + e… + 3ac�
c�V2b + 1 − b�

describing the dynamics of the V variable in the slow system.
The last equation can have up to three stationary solutions.

The trajectories of our system �2� consist of segments for
which the fast subsystem �4� is a good approximation to the
dynamics and of segments for which the slow subsystem �6�
is a good approximation to its dynamics. A full description of
the steady state and periodic solution sets of the fast sub-
system with the slow variable as a parameter and the dynam-
ics of the slow subsystem is essentially for the understanding
of the global bifurcations of the full system �2�.

As it is well known, systems with slow-fast dynamics can
have a burst activity which is characterized by slowly alter-
nating phases of nearly steady-state behavior and trains of
rapid spikelike oscillations. These two phases are called the
silent and active phases, respectively.

Our system has only one slow variable U. In the fast
subsystem we have a subcritical Hopf bifurcation for the
stationary solution. The periodic orbit disappears via a saddle
node bifurcation. According to the classification in �9� the
burst solution of our full system is called “subHopf/fold
cycle.” In �4� this kind of solution is identified as “elliptic”
bursting.

Figures 2�a� and 2�b� show the slow variable U �a� and
the fast variable V �b� depending on time. In Fig. 2�a� the
horizontally dotted lines denote the Hopf bifurcation and the
saddle node bifurcation of the fast subsystem. When U
moves from UHopf1 to USN1 the system is in the active phase,
and when U moves back from USN1 to the next UHopf1 the
system is in the silent phase.

Figure 3 illustrates the active and silent phases of the
systems in the slow-fast projection. The time interval of the
slow-fast projection in Fig. 3 is indicated by the arrow in Fig.
2.

During the active phase U decreases toward the saddle
node bifurcation USN1 of the fast periodic solution. When U
reaches this bifurcation point, then the trajectory falls into
the domain of attraction of the stable steady state. We have
then slow rightward movement along the steady-state branch
during the silent phase. If U reaches the Hopf bifurcation
point, the stable steady state becomes unstable and the tra-
jectory cannot continue to track it. It returns then to the os-
cillation of the fast subsystem in order to initiate the active
phase.

Figure 3�a� shows the fast oscillations of the system dur-
ing the active phase. Note that to the left of UHopf1 the at-

FIG. 1. Numerically computed bifurcation diagram of the
FitzHugh-Nagumo system �5� with respect to the bifurcation param-
eter U using the software XPPAUT �19�. The bifurcation diagrams are
calculated for a=b=0.9 and c=2.0. The stationary solution is drawn
with bold solid lines in the stable case and with a dashed line in the
unstable case. Maximal and minimal values of V for the periodic
orbit are shown in the unstable case with dotted lines and in the
stable case with solid lines. The insert shows the dynamics near the
Hopf bifurcation point UHopf1.

FIG. 2. Time courses of the slow variable U �a� and the fast
variable V �b�. Parameter values: �a ,b ,c ,q ,� ,��= �0.9,0.9,2 ,
−1 ,100,1�. The time interval of the slow-fast projection in Fig. 3 is
indicated by the arrow.

FIG. 3. Bifurcation diagram of the fast subsystem near the Hopf
bifurcation point �see also the insert of Fig. 1� and projection of the
solution of the full system �1� into the slow-fast �U ,V� plane: �a�
active phase and �b� silent phase. The values of the parameters are
the same as in Fig. 2.
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traction of the steady state is weak and the active phase con-
tinues “outside” the saddle node bifurcation at USN1. Figure
3�b� shows decay and growth of small oscillations during the
silent phase. Moreover, when the silent phase ends, U con-
tinues to oscillate near the steady state even after U has
passed the value corresponding to the Hopf bifurcation
UHopf1 in the fast subsystem. This phenomenon is called
“slow passage effect” �9�.

Thus, our system exhibits the following behavior in the
phase space. In the fast subsystem we have high-frequency
oscillations pushing trajectories outside the oscillation inter-
val of the FitzHugh-Nagumo system, and in the slow direc-
tion we have attraction, which leads trajectories back to the
oscillation interval and so on.

In this paper we restrict ourselves to the case of an inhibi-
tory coupling strength �q	0�. A bifurcation analysis for the
case of excitatory coupling �q�0� would go beyond the
scope of this paper. For the excitatory coupling parameter the
slow subsystem �6� can have more than one steady state �two
or three�. This leads to a more complex behavior of the full
system �1�. The existence of the stationary solution for �1�
and its stability with respect to the bifurcation parameters e
and q are given in �11�. For q�0 it turns out that there exists
also a Takens-Bogdanov bifurcation in addition to saddle
node and Hopf bifurcations �13,14�. In �15� it is shown that
complex dynamics arises alone in the case of two coupled
network equations �without a fast subsystem�.

B. Bifurcations of stationary solutions

In this section we analyze the stationary solution branch
of �2� in more detail. Therefore we first summarize existing
results on the stationary solutions that have been published in
�11� where the delayed neuron model has been analyzed.

The stationary solution �U* ,V* ,W*� has the form

U* = qG�V*� + e ,

W* =
a − V*

b
,

F�V*� = 0, �7�

with

F�V*� = −
c

3
�V*�3 − c�1

b
− 1�V* + �qG�V*� +

ca

b
+ �e

and

F��V*� = − c�V*�2 − c�1

b
− 1� + �qG��V*� .

In the case c�0, 1 /b−1�0, and �q	0 the relation
F��V*�	0 holds for all values a ,e ,�. Hence �1� has a unique
stationary solution in the form �8�. In the general case system
�1� can have one, two, or three stationary solutions depend-
ing on the parameter e.

A proof of the existence of the stationary solutions is
given in �11�. The case of multiple stationary solutions is
analyzed in more detail in �14�.

Note that F�V*�=0 additionally implies

e =
1

�
� c

3
�V*�3 + c�1

b
− 1�V* − �qG�V*� −

ac

b
� . �8�

Linearizing Eq. �2� along the stationary solution �U* ,V* ,W*�
yields

U̇�t� =
1

�
�− U�t� + qG��V*�V�t�� ,

V̇�t� = c	W�t� + �1 − �V*�2�V�t�
 + �U�t� ,

Ẇ�t� = �− V�t� − bW�t��/c . �9�

The matrix of the linearized system �9� has the characteristic
polynomial

p�
� = − 
3 + Q1
2 + Q2
 + Q3 �10�

with

Q1 = c�1 − �V*�2� − �b

c
+

1

�
� ,

Q2 = c�1 − �V*�2��b

c
+

1

�
� −

b

c�
− 1 + �

q

�
G��V*� ,

Q3 =
b

�
�1 − �V*�2� −

1

�
+

b�q

c�
G��V*� .

At a parameter value that corresponds to a Hopf bifurcation
equation p�
�=0 possesses one root 
1�R and two pure
imaginary roots 
2= i�, 
3=−i�, ��0. Thus the equation
p�
�=0 has the form


3 − 
1
2 + �2
 − 
1�2 = 0.

So we obtain the conditions for the Hopf bifurcation,


1 = Q1, �2 = − Q2, 
1�2 = Q3, �11�

or, in a more simple form, Q1Q2+Q3=0.
Returning to our original parameters yields

K2m − K�m2 + 1� + KD −
1

�
D +

b

c
�1 +

m

�
� = 0 �12�

with the abbreviations

K = c�1 − �V*�2�, D =
�q

�
G��V*�, m =

b

c
+

1

�
.

Note that 
1	0 holds in our parameter setting. So the
solutions of �12� determine the Hopf bifurcation in �2�. From
�8� we obtain the corresponding parameter values eHopf1 and
eHopf2. In order to show an example of the occurring bifur-
cations of system �1� we fix the parameters to
�a ,b ,c ,� ,q ,��= �0.9,0.9,2.0,1.0,−1.0,100� and compute
numerically the bifurcation diagram with respect to the pa-
rameter e. In the chosen parameter case the fast subsystem
has only one stationary solution and the slow subsystem has
a unique asymptotically stable equilibrium. Figure 4 shows
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the numerically calculated bifurcation diagram for the pa-
rameter e. There are values eHopf1 and eHopf2 such that for all
e in the interval e	eHopf1�e�eHopf2 system �1� has a stable
stationary solution in the form �8�. Moreover, the conditions
�12� and �8� define Hopf bifurcations which appear subcriti-
cal due to the results of the numerically calculated bifurca-
tions �see Fig. 4, bottom insert�. Before the occurrence of the
Hopf bifurcation the system has a saddle node bifurcation of
periodic orbits �see Fig. 4, lower insert�. As a result, we
obtain two unstable periodic solutions. One of them goes to
the stationary solution and disappears at the Hopf bifurcation
point. The other branch of unstable periodic solutions bifur-
cates into the stable spikelike solutions �see Fig. 4, upper
insert�.

III. NUMERICAL SIMULATIONS

This chapter provides numerical simulations of our neu-
ron system in order to show its dependence on the two im-
portant bifurcation parameters e �external signal� and � �syn-
aptic time constant�. The simulations clarify which types
of dynamics can occur for special parameter sets. In addition,
the stability of the different types of oscillations is
determined.

A. e as bifurcation parameter

In this section we analyze the bifurcation scenario with
respect to the parameter e in more detail.

Directly after the subcritical Hopf bifurcation our system
does not have a stable periodic orbit. The solutions of our
system in this interval �after the Hopf bifurcation and before
the appearance of the spikelike solutions� have a character-
istic burstlike form. Moreover, we obtain windows of peri-
odic and chaotic motion with respect to the parameter e. To
classify these burstlike solutions we use the Poincaré section
techniques. A close look at Figs. 6–9 shows that hypersur-
faces of the form U+V�−4 seem to be of interest. For our
actual computations we have chosen the hypersurface U+V
+4.3=0. In Fig. 5 the U component �slow variable� of the
Poincaré section with respect to the parameter e is shown.
We use the parameter values as �a ,b ,c ,q ,� ,��
= �0.9,0.9,2.0,−1.0,1.0,100.0�. As we can see, we have
windows with regular �stable periodic orbits� and chaotic
motions.

As a snapshot we present some computations for the sys-
tem �2� at four different values: e1=−2.6, e2=−2.5,
e3=−2.38, and e4=−2.35. In all of our examples we use
�a ,b ,c ,q ,� ,��= �0.9,0.9,2.0,−1.0,1.0,100.0�. In Figs. 6–9
the U and V components are plotted versus time and a pro-
jection of the solution into the “slow-fast” plane �U ,V� is

FIG. 4. Numerically calculated bifurcation diagram of system
�1� with respect to the parameter e using XPPAUT �19�. Bold black
lines denote stable stationary solutions and black dashed lines rep-
resent unstable stationary solutions. The maximal and minimal val-
ues of V for the stable periodic orbits are drawn with solid black
lines and with dotted lines for unstable periodic orbits. The inserts
show the dynamics near the Hopf bifurcation point eHopf1 �bottom�
and interval for burst solution �top�.

FIG. 5. U components of the intersections of trajectories with
the Poincaré section U+V+4.3=0.

FIG. 6. Numerical simulation of the neuron system �1� for e1

=−2.6. Top: V�t� �upper curve� and U�t� �lower curve� displaying a
chaotic burst solution. Bottom: Projection into the slow-fast �U,V�
plane.

FIG. 7. Numerical simulation of the neuron system �1� for e2

=−2.5. Top: V�t� �upper curve� and U�t� �lower curve� displaying a
stable periodic burst solution. Bottom: Projection into the slow-fast
�U,V� plane.
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shown. To clarify the structure of the dynamics on these sets
we compute the corresponding Lyapunov exponents 
 �see,
e.g., �20� for a definition�. We have to compute three expo-
nents, one of them always being equal to zero, corresponding
to the tangential direction of the flow, and the remaining two
determine the structure and the stability of these sets. Figures
10�a�–10�d� show the two maximal Lyapunov exponents for
the invariant set to the corresponding values of ei, i
=1, . . . ,4.

For e=e1=−2.6 �see Fig. 6� we have a chaotic burst so-
lution. V�t� displays the classical form of a burst and the
maximal Lyapunov exponent �Fig. 10�a�� is positive �
max

�0.005�.
In the case e=e2=−2.5 �Fig. 7� we observe a stable peri-

odic burst trajectory. This follows from the fact that the
maximal Lyapunov exponent is 0, but the second one is
negative. Figure 10�b� shows 
�−0.001.

For e=e3=−2.38, Fig. 8 shows a stable periodic solution
which is a transition-type between burst and spike solutions.
The second maximal Lyapunov exponent is negative
�
=−0.02 in Fig. 10�c��.

Finally, in the case e=e4=−2.35 �Fig. 9� we obtain a spik-
ing periodic solution. The maximal exponent is 0, and the
second one is negative �see Fig. 10�d��.

B. � as bifurcation parameter

In this section we analyze the bifurcations of the system
�1� with respect to the parameter �. The remaining param-
eters are fixed at the same values �a=0.9, b=0.9, c=2.0, �
=1.0, q=−1.0� as in the last section, and we choose
e=−2.5. For a classification of the different nontrivial solu-
tions we use Poincaré section techniques. An interesting hy-
persurface turns out to be the cut U+V+4.3=0 through the
phase space. In Fig. 11 the V components of the intersections
of interesting trajectories with the Poincaré section are
shown. Depending on the actual value of �, our system has
stable periodic and complex burst chaotic solutions.

The corresponding solutions to the values �1=60, �2
=160, and �3=67 are plotted in Figs. 12 and 13. As these
diagrams show, our system has periodic and chaotic solu-
tions. Moreover, multistable phenomena can also take place.
For �1=60 we obtain a stable periodic burst solution �Fig.
12�a��, for �2=160 we have a chaotic burst solution �Fig.
12�b��, and in the case �3=67 there is a coexistence of a
stable periodic and chaotic burst solution �see Fig. 13�. Fig-
ure 14 shows the two maximal exponents for �a� the periodic
solution from Fig. 13 and �b� the chaotic solution from
Fig. 13.

FIG. 8. Numerical simulation of the neuron system �1� for e3

=−2.38. Top: V�t� �upper curve� and U�t� �lower curve� displaying
a stable periodic solution which is a transition between bursting and
spiking. Bottom: Projection into the slow-fast �U,V� plane.

FIG. 9. Numerical simulation of the neuron system �1� for e4

=−2.35. Top: V�t� �upper curve� and U�t� �lower curve� displaying
a stable periodic solution in the form of spiking. Bottom: Projection
into the slow-fast �U,V� plane.

FIG. 10. Two maximal Lyapunov exponents 
 of the neuron
system. Lyapunov exponents for �a� e1=−2.6, �b� e2=−2.5, �c� e3

=−2.38, and �d� e4=−2.35.

FIG. 11. V components of the intersections of trajectories with
the Poincaré section U+V+4.3=0.
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For an explanation ansatz of this bifurcation scenario we
compute the Poincaré section on the surface U+V+4.3=0
and display the result in the �U ,W� plane �see Fig. 15�. An
important observation of Fig. 15 with fixed � is now there is
a functional relation of the form U=K�W�. This is demon-
strated in the �U ,W� coordinates for different values of �,
namely, �=100, �=160, and �=200 �see Fig. 15�. A conse-
quence of that fact is that the Poincaré dynamics with fixed �
is guided by a one-dimensional map. In order to discover the
underlying function of that 1D map, we plot U values of
consecutive iterates in the (U�n� ,U�n+1�) plane for �=100,
�=160, and �=200 �see Fig. 16�.

IV. ANALYSIS OF THE BIFURCATED NONSTATIONARY
SOLUTIONS

In this section we analyze the dynamical features of the
attractors appearing on the �-solution branch. Our starting
point is the analysis of the computed Poincaré map �see Fig.
16�. The first step is to normalize the map shown in Fig. 16
into �0,1�� �0,1� and to find an approximation for the gen-
erating function. Our fitting ansatz is a linear function for the
right part and a hyperbolic function of the form a+b / �c*x
+d� for the left part. This leads to the iteration

xn+1 = fp,q,k,l�xn� �13�

with the generator function

fp,q,k,l�x� = � p

qk
�− 1 +

qk + p

qx + p
� , x 	 k

l�x − k� , x � k
 �14�

and p ,q ,k , l in the set

P = 	�p,q,k,l� � R4:p 	 0,q 	 − p/k
 ,

	k � �0,1�,0 	 l 	 1/�1 − k�
 .

The fitting results for certain values of � are shown in Fig.
17.

Figure 17 shows that there is a good coincidence between
the numerically computed maps Fig. 16 and with its approxi-
mations. We can deduce the following relations from Fig. 17.

FIG. 12. Numerical simulation of the neuron system �1� for �a�
�1=60 and �b� �2=160. Top: V�t� �upper curve� and U�t� �lower
curve� displaying �a� a periodic burst solution and �b� a chaotic
burst solution. Bottom: Projection into the slow-fast �U,V� plane.

FIG. 13. Numerical simulation of the neuron system �1� for �3

=67. Coexistence of a stable periodic and a chaotic burst solution.
Projection into the slow-fast �U,V� plane.

FIG. 14. Two maximal Lyapunov exponents. Left: Lyapunov
exponents for the periodic burst solution corresponding to �3=67.
Right: Lyapunov exponents for the chaotic burst solution corre-
sponding to �3=67.

FIG. 15. Poincaré dynamics shown in the �U ,W� plane. The
orbit for �=100 is denoted with triangles, for �=160 with dia-
monds, and for �=200 with stars.
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An increase of � corresponds to an increase of q and a de-
crease of k. The value of l seems to act nearly independent
of �.

Next we analyze the iterative process Eqs. �13� and �14�.
Obviously, the interval �0, 1� is invariant for the map. More-
over, the dynamics of Eqs. �13� and �14� has always exactly
one fixed point in �0,1�, namely

x* = 	− p�1 + k� − ��p�1 + k��2 + 4pqk2
/�2qk�

which is unstable.
The most important point is to characterize the nonsta-

tionary long time behavior of Eq. �13�. For parameter values
w= �p ,q ,k , l� in

P̂ ª 	�p,q,k,l� � P;k 	 l�1 − k�,k 	 l�l�1 − k� − k�
 ,

we can easily calculate

fw�0� = 1,

fw
2 �0� = fw�1� = l„fw�0� − k… � „k, fw�0�… ,

fw
3 �0� = fw

2 �1� = l„fw
2 �0� − k… � „k, fw

2 �0�… ,

fw
4 �0� = fw

3 �1� = l„fw
3 �0� − k… � „0, fw

3 �0�… .

The intermediate value theorem applied to the continuous
function fp,q,k,l

3 : �0,1�→ �0,1� proves the existence of a pe-

riod three orbit for fw= fp,q,k,l, �p ,q ,k , l�� P̂. The famous
theorem of Li and Yorke �21� ensures that there are periodic
orbits of every period n�N and an uncountable subset S of
�0,1� containing no asymptotically periodic points in the dy-
namics �13�.

Thus, for w= �p ,q ,k , l�� P̂ including our parameter sets
pi ,qi ,kili, i=1,2 ,3 we have shown the existence of the so
called Li-Yorke chaos in the dynamics of �13�. Since the
Li-Yorke chaos takes place in a Poincaré cut of �1�, this
means that the attractor of the original system contains peri-
odic orbits of arbitrary length and an uncountable set of or-
bits with asymptotically periodic behavior. These results are
an impressive theoretical confirmation for the computed cha-

FIG. 16. Poincaré map for �=100 �triangles�, �=160 �dia-
monds�, and �=200 �stars�.

FIG. 17. Approximations �14� of the 1D Poincaré map: �a� �
=100: p1=−1, q1=2, k1=0.29, l1=0.9; �b� �=160: p2=−1, q2=5,
k2=0.155, l2=0.96; and �c� �=200: p3=−1, q3=6.5, k3=0.12, l3

=0.965.

FIG. 18. Analytical approximation of the 1D Poincaré map. Bi-
furcation diagrams of the map for the four parameters p, q, k, l of
the approximation.
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otic invariant sets in Sec. III B. The presented analysis ad-
mits precise insights into the internal structure of the attrac-
tor which cannot be obtained by purely numerical
computations.

In order to obtain information about the bifurcation sce-
nario in the complement area of P̂ in the parameter space, we
complete this section by simulating the dynamics of �13�
with respect to each of the parameter of fp,q,k,l and present
four different one-dimensional �1D� map bifurcation dia-
grams �see Fig. 18�.

Each of the pictures in Fig. 18 shows that the map �14�
with respect to the corresponding bifurcation parameter un-
dergoes a lot of bifurcation phenomena. We have windows
showing periodic cycles and chaotic motion. More precisely,
in the chaotic regions �black regions in Fig. 18� we observe
the appearance of periodic orbits of arbitrary order and the
existence of a dense orbit for the discrete dynamics �13�.
This means that for the original system �1� we have ensured
the existence of periodic orbits wriggling up arbitrarily, often
around a base orbit, and chaotic sets having the shape of a
blown up, closed curve in our original dynamical system.
The invariant sets plotted in Figs. 12 and 13 are exactly of
this type.

V. CONCLUSIONS

This paper provides a characterization into interesting dy-
namical properties of a single neuron model. The behavior of

the system with respect to important bifurcation parameters
was analyzed. It turns out that the system possesses a rich
structure of different oscillatory dynamics. The two oscilla-
tion types, bursting and spiking, were investigated with re-
spect to their stability using Lyapunov exponents. We found
that there exist chaotic burst solutions, stable periodic burst
solutions, stable transition states between bursting and spik-
ing, as well as stable spike solutions. This was done by the-
oretical investigation of a one-dimensional Poincaré map
with the Li and Yorke theorem.

Moreover, the present paper contains a numerically ob-
tained overview of some dynamical properties of our neuron
model completed by some analytical examinations. Never-
theless, there are some remaining problems. The analytical
proof of the existence of Hopf bifurcations in the neuron
model without delay is one of the future plans of the authors,
as well as the detailed description of the bifurcation mecha-
nisms and the interactions of slow and fast dynamics that
lead to bursting and spiking in this model.
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